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Abstract. Langevin-like equations have been studied in the presence of arbitrary noise. The
characteristic functional of the generalized Langevin process has been built up. Exact results
for all cumulants are given. Particular stress has been put on the Campbell, dichotomous and
radioactive decay noises. Transient relaxation, susceptibility and diffusion constants for different
(noisy) media have been sketched in order to exemplify the theory. The generalized Ornstein—
Uhlenbeck and Wiener processes have been completely characterized. The generalized Kubo
oscillator has been worked out and all its 1-time moments have been calculated for different
noise structures.

1. Introduction

Since the pioneering work by Ornstein and Uhlenbeck [1] the behaviour of systems under the
effect of noise has attracted the interest of many workers. In particular (linear) Langevin-like
equations (non-Markovian) for the relaxation of the velocity have been studied in different
contexts. As a matter of fact the 2-state Brownons model [2] has captured the attention,
for more than two decades, in order to describe problems such as noise-induced transitions
[3-5], and Brownian motion in inhomogeneous mediums [6]. In a similar context, the
generalized Wiener process driven by dichotomous [7] and white Poisson [8] noises have
also been studied in the presence of non-natural boundary conditions.

It is well known that if the stochastic process (s.p.j¢) is non-Markovian, a complete
characterization of the s.pV () demands the knowledge of the whole Kolmogorov
hierarchy, i.e. them-time joint probability distribution P[V (t1); V(22);...; V(t,)], or
equivalently all them-time moments(V (f1); V(%2); ...; V(t,)). When partial knowledge
of the s.p. is required, the 1-time probability distributi®iV (,)] is enough. This is the
case when only 1-time moments of the veloci#y(z)™) are required [3, 5, 6]. This fact
can easily be visualized using functional calculus, i.e. knowitdy (11)] is equivalent to
knowledge of the characteristic functioqexp kV (z1)); but in order to know the whole
Kolmogorov hierarchy a knowledge of the characteristic functideap [ ik(r)V (¢) dt) is
required, which of course is a much more complicated object [9]. In general if we knew
the formal solution of the stochastic differential equation (for each realization of the noise)
we could write an expansion fdexp [ ik(z)V (¢) dr) in terms of the cumulants of the noise.
This is not our task here because we are interested in a closed expression for this functional.
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Here we are concerned with obtaining a complete characterization of the generalized
Ornstein—Uhlenbeck process—with natural boundary conditions—i.e. when the noise term
is an arbitrary s.p€(¢). The case when the coefficients are time dependent has also been
worked out. Therefore by using the characteristic functional of the @) it will be
straightforward to calculate any-time moment. We have exemplified the method with the
calculation of linear relaxation mechanisms, correlation functions, and diffusion constants
driven by different (additive) noise structures (Campbell, dichotomous, radioactive decay,
Poisson, and in general any non-Gaussian noise). This approach is exact and provides a
systematic starting point to obtain higher-order cumulants. We should comment that this
method may be considered as complementary to a direct calculation of the moments from
the generalized Langevin-like equation. Nevertheless proposition 1 (or 2), below, is more
than that because it provides a systematic way of calculating non-trivial object such as
(cosf’ V(s)ds), etc. On the other hand the possibility of having a closed expression for
the characteristic functional of the generalized Ornstein—Uhlenbeck process allows us to
find all the 1-time moments of a particular class of multiplicative stochastic differential
equations. We will demonstrate this fact with propositions 4 and 5 below.

The generalized Wiener proceXyr)—with natural boundary conditions—has also been
worked out and their complete characterization has been given in terms of its characteristic
functional (proposition 3).

A multiplicative model, the so-called Kubo oscillator [1D](z) with an arbitrary noise
has been worked out. In this case we cannot calculate (in a closed way) the characteristic
functional of the s.pUJ(r), nevertheless we succeed in obtaining all the 1-time moments
(U@)™). We also present a formal expression for the 1-time probability distribution of the
processU (t). The analysis of the complex Kubo oscillator has also been done for three
different noises.

Some (particular) nonlinear stochastic differential equations (with arbitrary noise) are
shown to be reduced—in a similar way—in terms of our previous propositions.

2. The generalized Ornstein—Uhlenbeck process

The equation of motion of a one-dimensional Brownian particle in a generalized medium
has the Langevin-like form

?T‘t/ =—yV +E£@) V € [—o00, ] (2.1)
where V is the particle velocityyy > 0 the friction constant divided by the mass of the
particle, andé(r) € Re is an arbitrary time-dependent random force characterizing the
medium ¢he nois¢. When the s.p&(¢) is a zero-mean Gaussian white noise of intensity
(£(t1)&(t2)) = 2ykgT §(t1—t2), equation (2.1) is the usual Langevin equation. Thus, process
V (¢t) characterizes the velocity of a Rayleigh particle, so in this limit equation (2.1) is the
Ornstein—Uhlenbeck process [9].

Let us generalize the noiggr), with ¢ € [0, oo], to any arbitrary s.p. characterized by
the characteristic functional

G:([k@®)])) = <exp/0 ik(t)&(t) dt>. (2.2)

The notationG; ([k(r)]) emphasizes thaF depends on the whole functidsir) not just on
the value it takes at one particular time. The convergence of the integral is accomplished
because the functiorigz) may be restricted to those that vanish for sufficiently large
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Proposition 1.The characteristic functional of the s¥(¢), with a sure (non-random) initial
conditionV(0) = V; (the case whel, is a random variable is a trivial generalizatfpnis

Gy([Z@®)]) = e*ikoVOGE([e’”ko - / =9 Z(s) dsD (2.3)
0
wherekg is a functional ofZ(¢) given by
ko = / Z(s) exp(—ys) ds. (2.4)
0

Proof. The proof follows by integrating by parts, and from the fact that (2.1) can be written
as&é(t) = V + yV. Thus the characteristic functional of noié) is connected to the
characteristic functional s.(3/ (¢) by the relation

i d
Ge([k()]) = e % Gy ([—e”’dte‘y’k(t)]) :
Defining the test functior¥ (r) = —e*Vfge*Wk(t) we get (2.3). O

Therefore for any arbitrary noisgr) (characterized by its functiongt ([k(¢)])) all the
m-time moments of the s.V (¢) follow from mth order functional differentiation (often
called the variation or FEchet-derivative), i.e.

1)
8Z(t) 8 Z(ty) 720

Also, all cumulants of the s.pV () follow from their cluster properties, which are
sketched in appendix A.

There aresimplenoises which can easily be handled by using the cumulant-expansion
technique, it is therefore straightforward to find their functional. These are the cases of
Gaussian non-white noises and non-Gaussian white noises [9] (see appendix B). So using
proposition 1 and (B1) (for the Gaussian non-white noise), or (B3) (for the non-Gaussian
white noise) all moments of the s.p.(z) follow immediately.

(V(tl)v(tZ) cee V(tm)> =i"

Gv([Z(®D

(2.5)

2.1. The Campbell model for the nois&)

Following proposition 1, to characterize the s.p. of the velo¥itg) we need to know the
noise functionalG; ([k(r)]). Unfortunately there are only a few s.p. which can be summed
in order to findG¢([k(z)]) in a closed way, of which Campbell’s is one [11].

A stochastic realization, with € [0, co], of a generalized Campbell process is given

by {
ED) =) Yt —t5) (2.6)
o=1

where for each random integerthere is a set of independent random times obeying
{n < < ... <t} (ordered equally distributed independent random dots), watd

is a given function with finite support. Then, the characteristic functional of&#, in

the interval [Q o¢], is

Ge([k()])) = exp/ (exp[i/ k@Yt — t)dt] — 1>q(t)df 2.7)
0 0
whereg(t) is the density of one dot.

1 The average over the initial conditiofy can trivially be taken at the end of all the calculations.
i See chapter Il of van Kampen’s book [9].
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Application. The generalized Ornstein—Uhlenbeck process, with Campbell’'s noise, i

completely characterized by the functional (witk [0, oo])

Gv([Z(1)]) = etlko¥o exp/ (exp[i/ / &= 7Z(s)ds Yt — r)dt] - 1)q(r) dr
0 0 t
(2.8)
whereky is given by (2.4). This follows immediately from (2.3) and (2.7).

Examples. From (2.8) all then-time moments of the s.3/(¢) follow by taking functional
derivative of Gy ([Z(¢)]). For example the 1- and 2-time moments are

:eV“{V0+/oodrq(t)[Me}”1//(s —r)ds}
Z=0 0 0
(2.9)

(V(w)

., 0
| ST(;L)GV([Z(I)])

8 _ avw |2 /OO
8Z(a)SZ(,u)GV([Z(t)]) z=o_ey M{V0+V0 | dr q(7)

x[/aeyxw(s—r)ds+fﬂe”1p(s—r)ds]
0 0

+|:/Oodrq(r)/a &5y (s — t)dsi||:/oodr/q(t’)/# & y(s' — 1) ds/:l
0 0 0 0

+/oo drq(r)/ae”w(s—r) dsfu er’w(s’—r)ds/}. (2.10)
0 0 0

Obviously the time-dependent behaviour of the moments of theVs(p. will depend
on the shape of the pulsg(r) and on the density(r). From (2.9) and (2.10) the explicit
correlation function of the s.fv (¢) is

(V(@)V@w)=i2

o M
(V()V() = /0 dy /O dx €77 ((E(a — x)E( — ¥))) (2.11)
where
(@ — )& — ¥))) =/O gY@ —x—DY(p—y—1)dr

is the correlation function of the noise.
The half-Fourier transform of the stationary 2-time cumulant of the¥.@) is related

to the susceptibility of the system, so (2.11) provides a systematic way of calculating

susceptibilities for different Campbell’s noise models.
If the density of one dot isj(r) = exp(—t/T) and the pulse igy(r) = §(t) the

Campbell’'s noise corresponds to a non-stationary white-noise process similar to (B2).

However in this case the cumulants of this process follow by functional differentiation of

INGe([k(O]) = >0 ,'n—m, [0°° q()k()™ dr. Note that this noise can be related to a particular

decay model.
If the densityg(t) is uniformg(z) = v/T with = € [0, T], in the limit T — oo and
v — oo with v/T = constant, we can define= v/ T which represents the average number
of events per unit of time, thus(r) is a non-white Campbell’'s noise with pulsésr).
When (1) = A?exp(—|t|/z.), from (2.9) we get for the transient behaviour of the
moment of the s.pV ()
— VL

(V(w) = €7 Vo+ A%pr, {5[1 i ( °

. 1'_1) [e(y—rgl)u _ 1]} (2.12)
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The third term of (2.12) slows down when the correlation length of the nei¥és(equal
to y 1 (the dissipation parametér) The stationary correlation function (i.e, © — oo but

a—u#0)is

2
“VWWWDM=pﬁ{1eyua[ 1 14}
2y y+w) Y-t

el [ ln— ol }
y+wHy —wh

Jerln—al/te [ o % ] } (2.13)
2-1?  (y2-1?)?

which is well defined for any and .. Therefore this model shows, in the correlation of

the s.p.V (¢), a non-exponential contribution. Campbell’'s noise conduces to the fact that

the correlation (2.13) will show a longer relaxation tail when- t.. This is an interesting

phenomenon to consider when the susceptibility is the important object to be aralysed
The zero-frequency susceptibility is related to the diffusion constant, thus for this model

we get

D= [ UvOVONad =2oa'Ey
0

For Campbell’s white noise (shot noise), i.e. whetr) = BS(¢), the diffusion constant
is given by D = g—i‘; , Which is an expected result if we identify, = %sz (see
appendix B).

2.2. The dichotomous model for the no§ge)

The dichotomous s.p. is a 2-state Markov process defined byxa 2master operator,
which is completely characterized by the evolution equation of the conditional probability
P(&(t)|€(t0)). In general the random variabke can take two arbitrary values, but here
we will restrict the analysis to the symmetric case, §.e- +a, and adopt equal ‘up’ and
‘down’ hopping transition rates.

Denoting P as a two-dimensional vector, the master equation for the conditional
probability can be written as

; —A A
P = ( N —A)P (2.14)
with the initial conditionP(t = 0) = d¢.,.

For the dichotomous noise we cannot get a closed expression for its characteristic
functional, thus we give its series expansion (see (C7)).

Application. Following proposition 1, the generalized Ornstein—Uhlenbeck process, with
dichotomous noise, is completely characterized by the functional @witlf0, co])

. % s [e9) 2
Gy([Zm)]) = etk 20 ds{l —a? f dry / diok (1)k ()€ 257 4 g
0 0

o0 n 173 14
x / dty / dt, / dts / drak (t1)k (t2)k (t3)k (14) € 2Tzt ta=1a) 4 }
0 0 0 0

t A similar situation occurs when a dichotomous noise is used [5].

i Introducing two statistically independent Campbell's procegsés, £5(1) such thaté (1)) = (§1(r)—&2(¢)) = 0,
and in the limitx, o going to infinity, the first moment of the s.p.(¢) is zero and the second cumulant is equivalent
to (2.13).



8432 M O Caceres ad A A Budini

'H{ / dtlk(tl)e 20 —a3/ dtl/ dro
/ disk (1) k (1)k (t5)e 21 72H19) 4 ¢ / dn / dr, / dts / dts

x / drsk (t1)k (12)k (t3)k (ta)k (t5) e 212t tatts) . }(5a,so —8_a)
0
(2.15)

where
k(t) = f &9 Z(s) ds. (2.16)
t

This is accomplished from (2.3), (2.4) and the series expansion of the functional of the
noise (C7).

Examples. All the m-time moments of s.pV (¢) (with dichotomous noise) follow by
functional differentiation of (2.15). The first moment is

e vH
= Voe Th — §o [e=@r _ 1]

Vv =
(V(w) s 2=

5Z( )

(2.17)

from which we can appreciate that fox 2 y there is a similar slowing down (in the linear
relaxation) as with Campbell’'s noise.
The 2-time moment gives

1) 1) B Vogoefy(aﬂt) o
(V@)V(w) = —————Gy([Z(®)]) = y2e vty _ TO50% | ra-@-pe
8Z(@) 8Z(w) " 40 0 2. —y)
2 —yla— (a
+e,(2)~,y)ﬂ _ 2] + 2a {e yle—p| _ e y(a+p)
2+ vy) 2y
eV max(er; ;1) —2A min(a; ) _ e—V(OH‘M)

In the particular case = p, Vo = 0 (and in the stationary limit) (2.18) reduces to
the result found by Morita [5]. From (2.17), (2.18) and using a half-Fourier transform it is
straightforward to find the susceptibility. Note that the stationary correlation function of the
s.p. V (r) with Campbell’s noise (2.13) leads to a non-Lorentzian susceptibility, a situation
which does not occur for (2.18).

In this case the diffusion constantlis = 2(% . This result is in complete agreement
with Gitterman’s model [6], when the particle is only allowed to move inside the cluster

We remark that (2.15) is an exact result and gives us a starting point to find the
susceptibility and more complex objects like higher-order cumulants. It is also possible
to see from the functional (2.15) that the characteristic function of the 1-time probability
density P[V (t1)] can be found by using the test functiah(r) = k5(r — 1) in agreement
with Morita’s momenta.

f To see this, note that from (2.18) the stationary mean-square velocity divéss; = ﬁ , a result which
was pointed out in equation (4) and (24) of Gitterman’s paper [6] (in the appropriate limit).
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2.3. The radioactive-decay model for the najge

Let us consider the noise as a constant function of time, which decreases by finite steps at
random times;. If the probability per unit time for such steps is a consf@anthe noise can

be described by a one-step master equation [9]. This noise can be related with the number
N () of active nuclei surviving at time > 0, which is a non-stationary Markov process.
Therefore aadioactive decay noises modelled by a Markov chain (with an absorbing site:

& = 0) having a discrete range= 0, 1, 2, 3. .., initial value &, and master equation:

1
EarT(§|§O) = @E +DTE + 1) — T (El50). (2.19)

When therandom forcein (2.1) is modelled by this type of non-stationary noise, we
might consider its functional which can be obtained by using the Darling—Siegert theorem
[12] (see appendix C) and is given [13] by

00 t o
Ge([k())) = [ﬁ/o exp(—tﬁ+i/o k(s)ds)dt:| . (2.20)

From this functional it is simple to see that the first moment and the correlation function
of the s.p.&£(u) are

(E(n)) = &0 P
((5(#)5(0{))) = So(e_ﬂ max(u,a) __ e‘ﬂ(’”")).

Application. The generalized Ornstein—Uhlenbeck process, with radioactive decay noise,
is completely characterized by the functional (witk [0, co])

00 t o0 , éo
Gyv([Z®)]) =e+”<°V°[/3f dr exp(—tﬂ—i—i/ (/ & 9 Z(s)ds )dr’)] (2.21)
0 0 I

wherekg is given in (2.4). This fact follows immediately from (2.3) and (2.20).

Examples. From (2.21) all then-time moments of s.(V (¢) follow by taking the functional
derivative ofGy ([Z(¢)]). The 1-time and 2-time moment are

_ &pB _ 1—e®ve 1 1i|
v — e Vhy, ve| 2~ 4 Tg v 2.22
Wiy =e Vot = me [ G- " B° g (2:22)
—y(pte) M1 _ @ B-rk 1 1
VOOV (e — g2 € [ et _ ]
(V) V() B0 2 B =) +ﬁe B

1—egBwe 1 Bp) 1 e vuta) M1 _ @ (B—=2y) min(u,a)
— e —
[ B-v B /3} P [ (B —27)
e B-y)ymin(we) _ 1 g@Bmin(uae) _ 1
42 - }
B-v) B
e—Amin(u,a)
+EOT A-e")(1—-e7%). (2.23)

For y near tog (or g) these expressions show a non-trivial transient regime, which
is similar to the one appearing with the Campbell and the dichotomous noises. In this
particular model, the long-time limit of the correlation function is zero fkeu — oo but
o — u # 0] as expected.
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3. The time-dependent linear case

If a linear stochastic differential equation has time-dependent coefficients, the same
functional approach can be used to tackle the problem. A time-dependent linear case could
arise when using th&—expansion [9] in nonlinear stochastic differential equations. For
example it might be necessary to analyse the fluctuation spectrum of a nonlinear system
driven by a quasi-Gaussian noise (or maybe some non-white noise).

Using the—expansion it is well known that near noise approximatioicorresponds
to the Gaussian approximation, thus we propose here to study the following time-dependent
(linear) stochastic differential equation

Y =—n()Y + &) Y €[00, o] (3.1)

where theandom forceis any process completely characterized by its functigha[k(¢)]),
y2(t) is a sure function of time, ang (¢) is a positive function of timg Thus the complete
characterization of the s.x/ (¢) follows by

Proposition 2.The characteristic functional of the s¥.(¢) is

Gy([Z(1)]) = etk G,,([efo’ nodsg, / gl ) ds 74y dt']) (3.2)
0

whereky is a functional ofZ(¢) given by

ko = /00 Z(s) exp( — /X (1) dt) ds (3.3)
0 0

and the auxiliary functional of noisg(t) = y»(t)&(¢) is
Gy (k] = Ge([y2(Ok(®)]) (3.4)

meaning that any:-time moment of the s.py(¢) comes from taking the functional derivative
of G¢([y2(t)k(t)]) with respect tok(z).

Proof. The proof is entirely analogous to that of proposition 1. Note that from (3.1) we
can define the noise(r) = Y + »1(t)Y; k(¢) is a test function with finite support, and the
functional of the new nois@(z) is (3.4) (withy»(r) a sure function of time). O

A trivial example. Let us assume that the random force in (3.1) is a non-statiofiary
periodic Gaussian white noise Thus in (3.1) the simplest model would be to adopt
y1(t) = y1 = constant, and a random forge(1)£(r) = coqwet)é(r), where&(r) is a
zero-mean Gaussian white noise (appendix B). Using proposition 2 alitirae moments
of s.p. Y (¢) follow immediately by taking the functional derivative (of the test function
Z (1)) from

Gy([Z(1)]) = Ge <[cos(a)ot) / ” =97 () ds])

whereGe ([k(¢)]) is given in (B1) with(£(r)&(s)) = I'26(¢ —s), and we have used(0) = 0.
Thus it is easy to see that the time-asymptotic correlation function of th&'<#).is
({(Y (@)Y (B)))asymp
o ag Y+ @5+ v co2wo Min{a, B}) + yrwo SIN(2we Minfe, B})
= [y nle—pl 1 T @ TV
4y1 (vf + w})

T The functiony1(¢) can be related to the variational equation in the context ofzhexpansion.
1 A similar non-stationary 2-periodic stochastic process appears in frequency modulated non-equilibrium systems
[14].
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showing in the spectrum (susceptibility) the expected resonant behaviour with frequency
wp. Other noise structures (non-Gaussian) can also be analysed in a similar way.

4. On the generalized Wiener process

Another class of stochastic differential equations which are also very important in non-
equilibrium statistical mechanics, are those without inertial effects. Subsequently, when the
noise term is a Gaussian white process, this picture leads to the Smoluchoswki equation (in
the position phase space) rather than the Kramer—Fokker—Planck equation. This fact opens
the question of solving general stochastic process (without inertia) but driven by arbitrary
noise. This is a formidable task when ttendom forceis non-Gaussian and the potential
is nonlinear.

Using the same technique used to prove proposition 1 we can consider a generalized
Wiener process, i.e. when the potential is linear. So we obtain the stochastic differential
equation

X =C1+E£(0) X € [—o00, 00]. 4.1)

If C1 =0 and&(¢) is a zero-mean Gaussian white noid&(¢) is the Wiener process [9]. If

&(r) is a dichotomous random force (i.e. a noise with a finite correlation) theXs(p). is

no longer Markovian and its complete characterization is an interesting task. These types of
stochastic differential equations are particular relevant to discuss transport phenomena with
finite velocity and some effort has been put to obtain the 1-time probability distribution of
the process [15]. An alternative way of working out this problem is by using the functional
calculus, from which we obtain the following proposition.

Proposition 3.The generalized s.pX (¢), with a sure initial conditionX(0) = Xg is
completely characterized by the functional

Gx([Z(l‘)]) = e+ik°X° G,,([ko —/ Z(s) ds]) (42)
0
wherekg is a functional ofZ(¢) given by
ko :/ Z(s)ds (4.3)
0

and the auxiliary functional of noise() is

G,([k®]) = exp<iC1 /0 k(t)dt)Gs([k(t)]). (4.4)

Proof. The proof is entirely analogous to that of proposition 1. Note th@j is a
test function with finite support sé(co) = 0, and the functional of any shifted noise
n(t) = C1 + £(¢) with sure constan€; is (4.4). ([l

The time-dependent generalized Wiener process can also be solved in an analogous way
as in proposition 2.

Applications. If in (4.1) &(¢+) is a dichotomous noise (see the functional (C7)) by
proposition 3 anyr-time moment follows by taking the functional derivative@% ([ Z(1)]).
For example the 1-time moment is

_ -1 § _ _ & —2
(X(a)) =1 mGX([Z(I)]) o Xo+ Cro o le 1] (4.5)
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where as beforé is the initial condition of the dichotomous noise. The 2-time moment is

8

T5Z@) 3200 Gx([Z®OD

(X (o)X () =

7=0
(Xo + Cr)&g

1—e 2
5 [ ]

= (Xo+ C1a)(Xo + C10) +

n (Xo + C1)éo g 2 min@ip) _ 1
2\ 2\

Thus a dichotomous noise only changes the transient behaviour, i.e. after a time
t ~ maxXo, u) > %A the second moment (whefi; = 0) behaves like a Wiener particle

(X(1)?) ~ “;t. Equation (4.6), in the limitx = u, is in agreement with the results found by
Morita [5] and Hongler [15] who found the 1-time probability distribution (with a stationary
dichotomous noise). As the s.X (¢) is non-Markovian the 1-time probability distribution
is not sufficient to completely characterize the process, so that highere+tiigre moments
are required, which of course can easily be obtained from proposition 3 and for different
noise structures.

As a matter of fact, anyn-time moment of the s.pX () can be found from our
generalized Ornstein—Uhlenbeck process by putiing= 0 and noting that the constant
C; only introduces a dynamical redefinition, i.e. from (4.2) to (4.4) the initial condition is
shifted toXg — X+ Cqt.

For example (wher€; = 0, andXy = 0) the long-time limit of the second cumulant is

(X (W)X (@) = 4pA*tZ min(u, @).
here we have used a Campbell’s noise with a shape = AZexp(—|t|/t). However,
with radioactive decay noise the second cumulant of the generalized Wiener process gives

(X ()X (@) = Eoe ™M gy — %(1 _ ey — et

2
[1— e 2]+ “7 {min(a, 1) + (4.6)

@B min(u,a)

5 [—2 + 2/ M@ _ 28 min(e, 1) — A% min(e, w)?].

+&o

5. The generalized Kubo oscillator

Narrowing phenomena in magnetic resonance spectra have been studied, in a very elegant
way, by a simple oscillator with modulated (random) frequency [10]. Since then several
applications of this model have been used in very different problems [9, 16]. Let us now
consider the Kubo oscillator, i.e. the stochastic differential equation

U=(—y+E@)U (5.1)

wherey is the dissipation parameter. 4fr) is a Gaussian white-noise (5.1) can be reduced
(after the introduction of some specific stochastic calculus) to Fokker—Planck dynamics.
We propose here to characterize the §/jgr) when the noisé(¢) is an arbitrary process
characterized by its functionaf ([k(1)]).

Unfortunately we cannot give a closed expression for the functional ofg(p),
nevertheless all its 1-time moments can be found. Note that knowing all the moments
(U(t1)?) allows us to find the 1-time conditional probability distributi®U (¢1)|U (tp)] as
a series expansion [17]

01 a
P[U(m)|U(10)] = P (U1, 11|Vo, 10) = [Z <_8U0

P
- ) Mp(t,tquo)}S(U—Uo) (5.2)
p=0 P
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where M, (11, to Ug) = ((U(t1) — Up)*) are the centred moments which can be calculated
from proposition 4 (or 5) below and by employing Newton’s binomial.
The 1-time moments of the s.pl(¢) can be found by

Proposition 4.
(U@)") = Uge " Ge([k(t) = —ipO (11 — 1)]) (5.3)
where®(z) is the step functionand Uy the initial condition.

Proof. The proof is accomplished by introducing the change of varidble InU in (5.1)
and noting that the functional of the s.H (z) reduces to the generalized Wiener case with
a shifted noise;(t) = —y + &(¢), so using proposition 3 (witldy = —y) we obtain

Gu(Z®)]) =eik°H°Gn<[kO— /0 z<s>ds])

with ko = [;° Z(s)ds, Ho = InUp and Up = U(0) is the sure initial condition of s.p.
U (t). Noting that(U?) = (e’*) the p—moments of s.pU(¢) are given in terms of the
characteristic functiol ) (k) = (exp(ik H (t1))) evaluated at = —ip. Using the fact that
the characteristic function dfl (¢,) is obtained from the characteristic functiod@); ([Z(¢)])
and by putting the test functiof (1) = k8(t — t;) we obtain

Guay(k) = Gu([Z(1) = ké(t — ).

Therefore integra}jng, using the definition of the step funct®tr) and the fact that
G, ([k(1)]) = e o kO d G, ([k(r)]), proposition 4 follows immediately. O

Application. Giving any functional of noise&s¢ ([k(z)]) proposition 4 allows us to obtain
all the 1-time moments of s.@/(z). Trivial examples follow for the Gaussian noise, etc
(see appendix B).

With Campbell’s noise the 1-time moments are

oo 51
(U(n)P) = Uye 7 exp/ dr q(t)[expp/ Y(s —1)ds — 1]. (5.4)
0 0

In the particular case wheqi(s) is uniform, andy (1) = Bé&(t) (shot noise) the moments
can be written as

(U(n)") = U expra[p(€® — 1) — py]. (5.5)
This shows an exponential behaviour withwhich is quite different from the (zero-mean)
Gaussian white-noise caset/ (t1)”) = Ué’ e rrh exp(izrztl). From (5.5) we see that the
p-moment diverges only if # > 1+ py/p, thus if B (the amplitude of the shot noise)

fulfils B > y/p all the moments of generalized Kubo oscillator will diverge.
If we use a stationary dichotomous noise the 1-time moments are

(U(t)P) = Ufe=*tron [cosh(\/kz + p2a2t1> + sinh(\/)»2 + pzaztl)] )

(5.6)

To obtain this result we have used proposition 4 and the fact that from proposition 3 all
the 1-time moments of the generalized Wiener process can be found. Thus we can use

A

1 Note that, the way we are using the differential calculus corresponds to the Stratonovich interpretation of (5.1).
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the characteristic function from Morita’s paper [5], which is in agreement with our 1-time

moments. We see from (5.6) that tpe-moment diverges only ip(a® — y?) > 2yA. Note

that if y > a (the amplitude of the dichotomous noise) none of the moments will diverge.
If we use a radioactive decay noise the 1-time moments are

1— e ulB-p)
(B—p)

If B = p the moment has a different behavioyt/ (1)?) = Ufe 7#1[Br + 1]°. We see

from (5.7) that for(8 — p) < 0 the moments diverge only #f < &(p — B)/p. Note that

hereg is compared with a natural number because the jump size of the noise is one, this fact
can be seen from the characteristic functional (2.20). Due to the fact that the radioactive
decay noise is non-stationary all these moments depend on the initial corgition

&
(U(t)F) = Uferrs [,8 + eﬁ(ﬁp)} . (5.7)

Discussion. Depending on the noise and the value of dissipation parametée evolution

of (U(t1)?) will be different; this fact is strongly dependent on the noise amplitude. From

these simple results we conclude that noise’s amplitude controls (in a non-trivial way) the

time-evolution of the moments. This situation depends on the structure of the noise, on the

other hand this fact does not appear for non-multiplicative stochastic differential equations.
The complex Kubo case, i.&] = —i(wg+ £(1))U with U — U, +iUs,; can trivially be

obtained from our previous results by defining an imaginary nbise —i& and dissipation

y — lwg. For example, for the complex Kubo oscillator with Campbell’'s noise we obtain

({U@)?) = Ufe P explp(e™'7? — 1)). (5.8)

However, with a dichotomous noise we obtain:

) A .
(U(t)P) = Uy e OHiwortn |:COS<\/p2a2 - A2t1> + 55— sin (\/pzaz - A2t1>:| )
A

p2a2 _
(5.9)
With a radioactive decay noise the moments are
, 1 _ e-aB+ip %
(U(t1)") = Uf e |:/3(ﬂ+ip) + e"l“”'l’)} . (5.10)

Showing, in all cases, that the moments have an oscillatory decaying behaviour. From these
results the spectral analysis of the moments follow in a straightforward manner.

5.1. The time-dependent case
Let us generalize (5.1) to the stochastic differential equation:
U=—yOU + Uy()E®) (5.11)

where, as before, theandom forcet (¢) is an arbitrary noise completely characterized by
its functional G ([k(1)]), y2(¢) is a sure function of time angy(¢) is any positive function
of time. Thus 1-time moments of s.pl(¢) follow.

Proposition 5.

(U()") = Uy exp( - p/O Z10)) dS)Gs([k(t) = —ipy2()®(11 — D). (5.12)
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Proof. Using a procedure similar to the one used to prove proposition 4 we introduce the
s.p. H(t), which is now a time-dependent generalized Wiener one. ThisE{@) can
be solved in an entirely analogous way as in proving proposition 2. Therefore the 1-time
moments of s.pU (r) (5.12) follow immediately. d

5.2. Discussion on nonlinear models

Other (particular) types of nonlinear stochastic differential equation can also be obtained in
a similar way.

Example 1.Let the stochastic differential equation be

0 =—n(0INQ + OyE®) 0 € [0, ] (5.13)

whereé(¢) is an arbitrary noise characterized by its functioGal[k(7)]), y1(t) and y»()
are non-random functions as before. Introducing the change of varlabie In 0 we
obtain the generalized Ornstein—Uhlenbeck process (3.1). Th&smg.was completely
solved by proposition 2, thus all the 1-time moments of €}it) can be calculated as
(Q(t1)?) = (exppY (r1)). SO we obtain

(Q)") = Gy([Z(t) = —ips(t — ).
Example 2.Let the stochastic differential equation be

0=(n®+r0nNCne  Qecl0 ] (5.14)
herey1 (1), y2(t) and&(¢) are as in example 1. Introducing the change of variéble In Q
we reduce (5.14) to the generalized Kubo process (5.11). From proposition 5 we can
calculate the momentd/ (#1)?), therefore all the 1-time moments of s@(¢) are given as

[ee) j .
) =3 "),
=0/
We see that both examples have been reduced with the help of our previous propositions.

6. Conclusions

The generalized Ornstein—Uhlenbeck sW(z)—with natural boundary conditions—was
completely characterized in terms of its functio@} ([Z(¢)]), i.e. proposition 1. Several
models of noises have been constructed, particular stress has been put in the Campbell,
dichotomous, and radioactive decay noi§€&s. This fairly general method is based upon
knowing the characteristic functional of the noi6g ([k(t)]). Thus anym-time moment

of the s.p.V (¢) follows simply by taking the functional derivative @y ([Z(z)]). One

of the questions addressed in this paper was the characterization of the linear relaxation in
a generalized medium (different noise structures). In general the medium was represented
by a friction termy and an arbitrary random forégr) (additive noise) in a Langevin-like
equation (2.1). We have exemplified the method with the calculation of linear-relaxation
mechanisms (slowing down), correlation functions (susceptibilities follow simply), and
diffusion constants.

The generalized Ornstein—Uhlenbeck process (3.1), when the coefficients are time-
dependent, has also been worked out in proposition 2. The complete characterization has
been given in terms of its functional. This formulation is exact and provides a systematic
starting point to obtain higher-order cumulants and also to compute other non-trivial objects.
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As a final remark on the generalized Ornstein—Uhlenbeck process we would like to
comment that the interesting phenomenon of the rotation of a molecule in interaction with
its neighbours can be studied by using the results of this approach. The statistical properties
of the random torques can be very different from the usual Gaussian assumptions [18]. Thus
it is worth studying the simplest relaxation of a plane rotation characterized by the stochastic
differential equatiory 4+ y6 = £(r) , where the quantity of interest is the cosine of the polar
angle co®(r). It is possible to see that a nontrivial object such{@osp (r1) — 0(12)]))
can be calculated by using proposition 1 (or 2yif— y(¢)). The ideal hard-collision
approximation (Gaussian random torques) can be generalized by considering different noise
structures—as the one presented in this paper—working along these lines is in progress.

The generalized Wiener s.X (1)—with natural boundary conditions—has been defined
in (4.1) and its complete characterization was achieved by proposition 3. We have worked
out the s.p.X (r) when&(r) is any s.p. characterized by its function@} ([k(r)]); some
particular examples of noises have been shown.

The so-called Kubo oscillatot/ (¢) with arbitrary noise&(z) has been studied (5.1),
and all the 1-time moments have been characterized by proposition 4. Examples follow by
using Campbell’s, dichotomous, and radioactive decay noises. The case (5.11) with time-
dependent coefficients has also been worked out, and all the 1-time moments characterized
by proposition 5. A closed expression for the 1-time conditional probability distribution
can be found by quadrature, i.e. proposition 4 (or 5) allows us to write a series expansion
for the probability (5.2).

On the other hand the interesting phenomenon of the ‘broadening line’ in the complex
Kubo oscillator (for different noises) can also be studied from results (5.8) to (5.10). Note
that proposition 4 (or 5) allows us to find a closed expression for all the 1-time moments
of the Kubo oscillator, in contrast to previously reported methods [10].

We remark that there is no limitation on the calculation of any higher-order cumulant
of our generalized Orsntein-Uhlenbeck process. When the functional of noise is only
known as a series expansion the calculation follows diagrammatically as was shown in
appendix A. Some mathematical details about the functional of simple noises can be found
in appendix B. In general the function&lk ([k(¢)]) of any Markov noise can be found using
the Darling—Siegert theorem. Thus in appendix C we have used this theorem to calculated
the characteristic functional of the dichotomous noise.

In this paper we have used a functional technique to solve problems with natural
boundary conditions, the application of this method to problems with non-natural boundary
condition is under investigation.
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Appendix A. Cluster properties for the cumulants

The problem of solving all the cumulants, if we know all the moments, is a very well known

task [9, 10]. In order to make this paper self-contained, and following proposition 1, we
want to give here a simple diagrammatic technique from which all the cumulants can be
drawn as cluster diagrams, i.e. amytime cumulant can be drawn in terms of tietime
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moment and all the previoustime cumulants (withk < m). Figure 1 shows some diagrams
of cumulants. From these graphs it is possible to see that their construction follows certain
prescriptions.

(1) For each random variable we introduce a vewdrto the graph.

(2) Each double bond represents a cumulant between the connecting vertexes.

(3) Each simple bond corresponds to a moment between the connecting vertexes.

(4) Each isolated verte® represents the first moment of the vertex.

(5) Any m-time cumulant is built up by subtracting from thetime moment all the
different graphs involving all the possibletime cumulants of lower order, i.@. < m.

From (2.3) it is possible to write down all the cumulants of our generalized velocity
process if we know the functional of the noi6e ([k(¢)]) and we take functional derivatives
of InGy([Z(?)]), i.e. using proposition 1. Note that the diagrammatic technique is a useful
tool when the characteristic functional of the noise is only known as a series expansion, as
in (C7).

Appendix B. On the characteristic functional of simple noises

If £(¢) is a zero-mean Gaussian non-white noise, with[0, oo] the characteristic functional
can be found by using the cumulant expansion technique [9]

oo. -1 o) o]
Gg([k(l‘)])=<EXp/0 Ik(t)s(t)dt>=eXp2 /O /0 k(s)k(t)(&(1)E(s))dr ds. (B1)

If £(¢) is a stationary non-Gaussian white noise, i.e. for arbitrary consigmge have
the following cumulants (for > 2)

(§(t)E(12)E(13) ... 6(tn))) =T 8(t1 — 12)8(ta — 13) ... 811 — 1) (B2)

Then withr € [0, oo] the characteristic functional of s.g(r) can be found as [19]
Ge([k(n)]) = exp) L /O (k(1))™ dt. (B3)
m=1 .

For example the Poisson white-noise is a monoparametric s.p. {wita I'), which is
completely characterized by the functior@} ([k(1)]) = exp(T’ fo°° dr [expik(r) — 1]). So
all the cumulants of the s.p/(¢) (with Poisson random forces) would follow just by using
(2.3) and taking the functional derivative ofdh, ([Z(2)]).

For a generalized white-noise and following from proposition 1, the 2-time moment of
s.p. V(¢) will only depend on the constanid andI',. Only higher correlation functions
of s.p. V' (¢) will carry information on the non-Gaussian structure appearing in (B3)I'j.e.
with n > 3.

Appendix C. On the characteristic functional of the dichotomous noise

In section 2.2 we commented that the characteristic functional of the dichotomous noise
cannot be summed in a closed way, this is why we wrote only its series expansion in (2.15).
Here we show by using the Darling—Siegert theorem [12, 13] why we cannot find a closed
expression for such a functional.

The Darling—Siegert theorem states that for any Markov process it is possible write a
masterly equation from which the characteristic functional can in principle be solved.
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Figure 1. First non-trivial cummulants corresponding to an arbitrary stochastic pracgss
(a) Diagram representing the second cumulantXiXz)) = (X1X2) — (X1)(X2). (b)
Diagram representing the third cumulant(X1X2X3)) = (X1X2X3) — (X1)(X2)(X3) —
((X1X2))(X3) — ({(X1X3))(X2) — ((X3X2))(X1). (c) Diagram representing the fourth cu-

mulant:  ((X1X2X3X4)) = (X1X2X3Xa) — (X1)(X2)(X3)(Xa) — ((X1X2))(X3)(Xa) —
(X1 ({(X2X3)){(Xa) — (X1)(X2)((X3Xa)) — ((X2Xa))(X2)(X3) — (X1){({(X2Xa))(X3) —
(X1 X3))(X2)(Xa) — ((X1X2X3))(Xa) — (X1)((X2X3X4)) — ((X1X3X4))(X2) —

((X1X2X4))(X3) — ((X1X2))((XaX3)) — ((X1X4)){(X2X3)) — ((X1X3))((X2X4)). Any non-
conmutative cumulant diagram follows by using prescriptions 1-5 .
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Let the Markov process be the 2-state process characterized by (2.14); thoemt#iled
characteristic functional is a solution of

d -1 A , 1 0
dtg_( . _k)g+|ak(t)<o _1>g (C1)
with the initial conditionG(t = 0) = d¢.5,. This masterly equation involves a continuous

test functionk(z) with finite support. Thus for the dichotomous noise the characteristic
functional is given by

2
Ge(k®) = lim > G([k(n)]. 1) (C2)
=1

whereg, represents thé&h component ofj.
Defining new variables) = Gi1([k(®)], 1) + G2([k(®)],t) and x = Gi([k(®)], 1) —
Go([k(2)], t) equation (C1) can be written as
d

gV = [-2M +iakON]W (C3)

where the components of the vectdW(r) are Wi = Wi(k(@®)],1) = n, W, =
Wh([k(®)], t) = x, and the 2x 2 matricesM, N are given by

Mz(g 2) NE((l) é) (C4)

Introducing the matrices
Ag = —2AM A1(t) = iak(t)N
equation (C3) can be written in the interaction representation as
W =R(@HW (C5)

Where R(t) = exp(—tAg)A1(?) exp(4+tAg) and W () = exp(+tAg)W(¢), therefore from
(C5) we obtain for each component Bf(¢) (in the interaction representation)

ny _ 0 iak(r)e 2\ ((n;
(X;) o (iak(t)e+2“ 0 ) (X1> . (Ce)

An explicit solution of (C6) involves a time-ordering operator, unfortunately it is not
possible to obtain a closed expression [20] ¥8(z) but its series expansion is simple to
find.

Using the initial condition for thesurtailed characteristic functionalin the interaction
representation we obtain

_ Safo + 5*11,&0
o= (80-,50 - a—uqéo ’

Thus going back to the first representation, using (C2) and the fact that the characteristic
functional is the first component ¢f we obtain

Ge((k(]) = {1 —a? / Ty / ok (k(tp)e 20
0 0

o0 n 173 173
+a* / dr, / dt, / dts f dtak (11)k (t2)k (t3)k (14) €~ 2112 F1a—1a) +}
0 0 0 0

o] o] 1 2
-H{a / dnk(t)e " — 8 / dn / dr, / drsk (1)
0 0 0 0
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oo n 2 3 14
xk(tp)k(t3)e~ 212 H1) 4 5 / dn [ dr, / dts / dts / desk (1)
0 0 0 0 0

xk(t2)k(t3)k (t2)k (ts)@~ 21—tz tla—tatls) }(Sa,go — 8 a) (C7)

where we have used théi g + 6_, 5 = 1. Note thata” (8,5 — 6—45) = (Fa)" = (&))"
the initial condition of the dichotomous noise.

From the exact expression (C7) all thetime moments of the dichotomous noise can
easily be calculated, for example its correlation function gives the well known result

((E(s1)E(52))) = (E(s1)E(s2)) — (E(s1))(E(s2))
= a? exp(—24ls1 — s2]) — (£0)? eXP(—2A(s1 + 52))-
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